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ABSTRACT 

Geostatistical methods have been available for a long time, but have found little application in engineering geology. This pa-
per aims to show the advantages of applying geostatistics in the assessment of geotechnical variables of engineering projects. 
When compared with standard techniques, such as the inverse distance weighting or averaging of sample data, geostatistics gives 
a more precise estimation and provides a measurement of the uncertainty in the estimation. The latter may be used during the risk 
analysis of the projects. For a correct application of geostatistical estimation and simulation techniques, we review the particular 
features of some geotechnical variables that should be considered. This includes (1) non-linearity, (2) directional behaviour and (3) 
mixing of multiple populations. To neglect these characteristics may lead to significant errors, not only in geostatistics, also in 
other techniques normally used in the industry. A methodology is proposed for applying geostatistical techniques to model rock 
mass quality by using the Rock Mass Rating (RMR), which is a parameter widely used in engineering projects. The methodology 
is applied to Chuquicamata Underground Project in Northern Chile, which is one of the largest underground mining projects in 
the world. This project aims to extend the life of the open pit currently in production. Results are compared with the current ap-
proach, which consists in defining geotechnical units and averaging the available information within large volumes. The proposed 
methodology shows a significant improvement in the quality of the local estimation. The results are statistically validated by us-
ing a jack-knife technique. 
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1. INTRODUCTION 

The geotechnical characterization of the rock mass is one of 
the most relevant aspects for the success of projects in the mining, 
hydropower and tunnelling industries, among many others. Due 
to this, a significant investment is placed for data acquisition 
during the phase of ground investigation. An equivalent effort 
should be done to manipulate and interpret the data obtained.  

In order to study a rock, it is important to distinguish be-
tween intact rock and rock mass properties. Intact rock is defined 
as the rock material found between discontinuities. The rock 
mass, on the other hand, comprises the total volume of rock, in-
cluding intact rock and discontinuities, and its mechanical be-
haviour can be significantly different than that of the intact sam-
ples. 

Some of the most relevant intact rock properties for an en-
gineering project are density, permeability, rheological behaviour 
and uniaxial compressive strength (UCS). On the other hand, in 
order to describe a rock mass, it is also necessary to characterize 
its discontinuities. This includes the roughness, filling quality and 
weathering in the discontinuity walls, among others.   

In practice, rock mass properties are summarized using a 
rock mass classification (RMC) scheme (Holland and Lorig 
1997; Brown 2003). In addition, since RMC methods are used in 
engineering projects, they usually consider other parameters such 
as stress field and water conditions. In large scale projects, the 
most commonly used schemes are:  

1. Rock Mass Rating (RMR) (Bieniawski 1973; 1976; 1989);  

2. Mining Rock Mass Rating (MRMR) (Laubscher 1977; 1990); 

3. Geological Strength Index (GSI) (Hoek 1994).  

In this paper we shall focus our analysis on the RMR. This 
system consists in a weighted sum of ratings assigned to each of 
the following parameters: Rock Quality Designation (RQD), 
Fracture Frequency (FF), Uniaxial Compressive Strength (UCS), 
Joint Condition (JC) and Underground Water Condition (WC). 
We will exemplify a methodology to characterize the rock mass 
behaviour and its uncertainty using geostatistical techniques with 
this classification scheme. The notions presented are general and 
could be easily extended to other classification schemes. 

The use of geostatistics to model geotechnical variables is 
uncommon, although some attempts have been made, mainly 
considering the use of kriging techniques for the estimation of 
spatially distributed variables. Van de Wall and Ajalu (1997) 
used block kriging to estimate average values of an indicator of 
rock strength, namely the hardness, to define the proper sampling 
strategy in a quarry of construction material. Castaing et al., 
(1997) used geostatistics to characterize the distribution of frac-
tures in a network to understand the spatial distribution at differ-
ent scales. Archambault et al., (1997) characterized the asperity 
of joint surfaces through geostatistical analysis. Gentier et al., 
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(2000) studied the relationship between fracture geometry and 
the damage caused by shear stress. More recently, Ayalew and 
others (2002) used ordinary kriging to estimate the RQD distri-
bution, associating the estimation standard error as a measure of 
reliability. 

When considering classification of rock masses, only few 
applications can be found in the literature aiming at the estima-
tion of RMR (You and Barnes 1997; Exadaktylos and Stav-
ropoulou 2008). However, they use a direct estimation of the 
RMR value through non parametric techniques (indicator 
kriging) or directly by ordinary kriging. Indicator techniques may 
be cumbersome to apply, and do not provide a single estimate, 
but rather, a distribution, thus deciding what to do with the result 
may not be simple for practitioners. On the other hand, the direct 
use of ordinary kriging to estimate RMR does not account for the 
non-linearity of this parameter, and may carry important estima-
tion errors. 

One of the most relevant issues with variables whose values 
change in space is that these variables must be additive if block 
kriging is to be used for their estimation. In order to illustrate the 
concept of additive and non-additive variables, let us check the 
example of pH. This variable corresponds to the logarithm of the 
concentration of H+ ions. Since pH is non-additive, the average 
of pH values is different than the logarithm of the average con-
centration of H ions, Eq. (1). The latter is the correct approach, 
because the arithmetic mean (<  >) has to be calculated over an 
additive variable, in this case the number of H ions.  

( )pH Log H Log H        (1) 

RMR, being a sum of ratings assigned non linearly to sever-
al geotechnical parameters, has a similar behaviour than pH. 
Thus, RMR is not an additive variable, hence it should not be 
directly estimated by using geostatistical tools. The correct ap-
proach to spatial prediction in this case, would be the following: 

 1. To estimate or simulate each of its parameters (RQD, FF, 
UCS, JC and WC), which are linear variables. 

 2. To assign a rating to the estimated or simulated value of 
each parameter. 

 3. To obtain the final rating, RMR, as the sum of the ratings 
obtained in step 2. 

Instead of using geostatistical methods, it is usual in the in-
dustry to divide the rock mass in different geotechnical units and 
assign constant values to the geotechnical parameters inside each 
unit. A geotechnical unit aim to represent a volume with similar 
geotechnical behaviour of the rock mass. The geotechnical prop-
erties inside each unit are commonly assigned by averaging the 
values obtained during the ground investigation phase. For in-
stance, the average of the UCS tests of all samples located in a 
given unit, or the average of all the RMR values mapped or esti-
mated in the unit. This corresponds to the zoning and averaging 
method.  

This paper is organized as follows: We start with a review of 
some important geostatistical concepts to back up our proposed 
modelling approach. Then the nature of the geotechnical varia-
bles is discussed and a methodology is proposed. The methodol-
ogy is implemented in a real case study, Chuquicamata Under-
ground Project. Also the zoning and averaging method is applied 

to the same database. The results obtained by both methods are 
quantitatively compared in order to measure the benefits of using 
geostatistics. The results are statistically validated by using jack- 
knife technique. Jack-knife consists in splitting the database in 
two sets and then using one set to interpolate the values at the 
locations of the data samples from the other set. Thus, the esti-
mated values can be compared with the real values in order to 
assess the quality of the estimation. 

2. THE GEOSTATISTICAL APPROACH 

2.1  The Geostatistical Framework 

Geostatistics was originated to solve prediction problems in 
gold mines in South Africa (Krige 1952). The apparent random, 
yet structured behaviour of gold grades triggered the formulation 
of a probabilistic approach, where the grade value at an unsam-
pled location, z(u), is related to a random variable, Z(u), charac-
terized by a probability distribution. The structured behaviour is 
accounted for by relating random variables at different locations 
by means of a random function, {Z(u), u  D}. This random 
function is characterized by its statistical moments which must be 
inferred from the available data, that is, the values gathered at 
sample locations, {z(u),  1, , n}. 

The spatial distribution of actual values of the variable 
within the domain is interpreted as a realization of this random 
function. The geostatistical paradigm consists on estimating the 
expected value of the random variables at every location to ob-
tain a map suitable for local optimum prediction or constructing 
other realizations of the random function to characterize the un-
certainty associated to unsampled locations, preserving the spa-
tial relationships between locations. This is achieved through the 
estimation and simulation techniques that are discussed in the 
following paragraphs. 

2.2  Geostatistical Estimation  

Estimation is done by considering a linear estimator that 
depends on the surrounding information available. In geostatis-
tics, this estimator is called kriging and is the best linear unbiased 
estimator (Journel and Huijbregts 1978; Isaaks and Srivastava 
1989). The construction of the kriging estimator is done by suc-
cessively imposing these features (linearity, unbiasedness, opti-
mality). Variations of the estimate are achieved by imposing a 
known or unknown mean, and allowing local variations of it 
(Goovaerts 1997). Kriging is the best estimator in the least 
squares sense, that is, it imposes the minimization of the error 
variance. The simple kriging estimate assumes the mean known 
and constant: 

*
0

1 1

( ) ( ) 1
n n
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 
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The estimation variance results in: 
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    u u u  (3) 

where 2
Z  is the variance of the population, which is estimated 

from the sample data, C(u, u0) is the covariance between the 
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data located at u and the location of interest u0, and  are the 
optimum weights to minimize this error variance. This variance 
gives a basic measure of uncertainty of the estimated value. 
However, as seen in Eq. (3), it does not depend on the sample 
values themselves, but only on their locations. Therefore, the 
kriging variance measures the uncertainty at the estimation loca-
tion due to the spatial configuration of the available data for its 
estimation rather than based on the dispersion of the values.  

The kriging weights are obtained from solving the following 
linear system of equations, which arises from imposing the min-
imization of the error variance: 

0
1

( , ) ( , ) 1, ...,
n

C C n   

    u u u u  (4) 

2.3  Geostatistical Simulation  

Geostatistical estimation is at the heart of simulation meth-
ods. The idea of simulation is to provide alternate realizations of 
the random function, recalling that the actual values are inter-
preted as one possible realization of it. Therefore, each resulting 
realization performs like the actual deposit and can be used for 
risk assessment and uncertainty quantification. The main differ-
ence between estimation and simulation is that the former looks 
for the best local estimate, while the latter is concerned with re-
producing the spatial characteristics that relate multiple locations.  

There are several approaches to simulate a random function, 
most of them are based on a multigaussian assumption that re-
lieves the inference of the probability distribution characterizing 
every location. Under this assumption, the random variable Z(u) 
can be linked to a Gaussian shaped probability distribution, 
whose expected mean and variance are identified with the simple 
kriging mean and kriging variance (Eqs. (1) and (2)). Simulated 
values are directly drawn from this local distribution and the spa-
tial correlation is imposed through a Bayesian framework, by 
sequentially conditioning the inference of the probability distri-
bution at a given location on the previously simulated values at 
other locations (Journel 1974; Deutsch and Journel 1998). Since 
most variables are non-Gaussian, this approach is implemented 
after a transformation of the distribution into a standard Gaussian 
distribution. The application of this method requires the follow-
ing steps: 

 1. First, distinct statistical and geotechnical populations should 
be defined in order to group data with similar characteristics 
into subsets, called geotechnical units. The analyses are 
done for each set separately. Each population should contain 
a large enough number of sample data in order to allow for 
statistical inference of the moments of the random function. 
Furthermore, each estimation unit should be spatially delim-
ited to a specific volume, within which the estimation or 
simulation is performed.  

 2. For each estimation unit, the representative data distribution 
must be transformed into a standard Gaussian distribution. 
This may require correcting for non representative spatial 
sampling through declustering (Deutsch 1989). 

 3. The transformed variable should be checked to ensure that it 
does not violate the multigaussian assumption (Goovaerts 
1997). 

 4. A three-dimensional variogram model of the continuity is 
required in each estimation unit. It is obtained by computing 
and fitting a model to the experimental variogram or covar-
iance function of the transformed variable. Any anisotropic 
behaviour should be characterized at this stage. 

 5. Simulation proceeds by defining a grid and visiting the 
nodes in a random path for each estimation unit. 

 6. At every node simple kriging is done considering the in-
formed nodes and data belonging to the same subset within a 
neighbourhood. A simulated value is generated from this 
distribution by Monte-Carlo drawing using a Gaussian dis-
tribution function with mean and variance as per the kriging 
result. 

 7. This new value is used as conditioning information in all 
subsequently visited nodes. 

 8. Once completed, the simulated values are back transformed 
to the original distribution within each estimation unit. 

Multiple realizations can be generated by changing the ran-
dom path and drawn values in each conditional distribution. Each 
realization provides a plausible image of the true distribution of 
the attribute. They can be used to assess the joint uncertainty 
(several points at a time) for a given process.  

Realizations must be validated to ensure they reproduce the 
essential statistics of the data (histogram and variogram). 

Other methods to simulate multigaussian random functions 
exist and could be used alternatively (see for example Chiles and 
Delfiner 1999).  

Simulation trades off the local precision obtained in kriging 
to reproduce the spatial continuity of the variable. The distribu-
tion of simulated values at every unsampled location provides a 
measure of uncertainty and, contrary to the kriging variance, this 
uncertainty is data value dependent. This is highly convenient in 
most applications where some relationship is seen between vari-
ability and local mean.  

The simulation output can be processed to infer the distribu-
tion of a given response to a process. For instance, the models 
could be used to estimate the expected rock support in the cav-
erns and tunnels. Each realization will lead to different support 
requirements. Over a large number of realizations and given a 
decision about the acceptable risk, the support may be designed 
to ensure that in 90 of the cases, there is no risk of instability.  

3. GEOTECHNICAL VARIABLES 

The nature of geotechnical variables is usually neglected. In 
order to consider it, we will review some important variables, 
their nature and consequences in the modelling process.  

Consider classification of the rock mass using the RMR 
methodology. The final rating at any location is given by a sum 
of ratings assigned to several parameters. The following corre-
sponds to the RMR (1989): 

(a) Uniaxial Compressive Strength (UCS) [0-15 points]: It is the 
maximum stress that a sample of intact rock can resist under 
uniaxial compression. Its value depends mainly on the na-
ture and composition of the rock, but also on the porosity, 
degree of weathering, and water content.  

(b) Discontinuity Spacing (DS) [5-20 points]: It is usually cal-
culated as the inverse of the fracture frequency (FF), which 
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measures the number of discontinuities per meter, including 
fractures, dykes, faults and others, obtained by geotechnical 
mapping. Higher values of DS imply less discontinuities, 
hence a better rock mass quality. 

(c) Rock Quality Designation (RQD) [3-20 points]: It is the 
percentage of the drill core that is recovered in intact pieces 
longer than twice its diameter. A higher FF usually leads to 
a lower RQD. Some correlation should be expected between 
FF and RQD.  

(d) Joint Condition (JC) [0-30 points]: Some discontinuities 
worsen the rock mass quality more than others, depending 
on properties such as the separation, persistence, surface 
roughness and alteration, and the filling material. JC sum-
marizes these properties. 

(e) Water Condition (WC) [0-15 points]: The presence of water 
under pressure in the joints of a rock mass reduces its 
strength and therefore must be considered when character-
izing the rock mass.  

This classification system allows categorizing the rock mass 
into five quality classes ranging from very good (RMR 81) to 
very poor (RMR 20). 

Some of these variables are peculiar in the sense that they 
are non-additive or have a behaviour that depends on the direc-
tion in which they are measured.  

As discussed previously, non-additive variables are those 
whose linear average lacks of physical sense (Howson 2004). 
Usually, this problem arises with variables that are a non linear 
function of other parameters. This is the case of the RMR which 
is the sum of several ratings non linearly assigned from others 
components: UCS, RQD, JC, FF and WC. However, each of 
these components is an additive variable and therefore, can be 
directly averaged and modeled with geostatistical techniques. 

Variables with directional behavior can be exemplified by 
FF and RQD. Depending on the direction of the drillhole or the 
scanline survey, the fracture frequency and the RQD may proba-
bly change. Notice that this concept is different than geostatisti-
cal anisotropy. The same directional behaviour is valid for the 
other variables. Since RMR depends on each of these variables, it 
also has a directional behavior. Unfortunately, the information 
available in the geotechnical databases not always allows to con-
sider this effect in the data interpretation.  

Under the framework of the random functions, the data used 
for estimation and simulation should belong to a consistent statis-
tical and geotechnical population. This allows pulling together 
data for statistical inference. Some geotechnical variables, espe-
cially those associated to discontinuities are the result of several 
phenomena intermingled: Joints produced by intrusion of a body 
are different than those produced by weathering; however, they 
both count equally when assessing FF. There is a mixing of pop-
ulations that cannot be discerned. This translates into poor spatial 
correlation, but is unavoidable. 

Most of these particularities of geotechnical data are not 
properly handled by standard methods such as zoning and aver-
aging. This may lead to significant errors.  

Finally, it is important to mention that there is a significant 
degree of subjectivity in the geotechnical characterization of 
specimens. This leads to unavoidable uncertainty, which should 
be considered in the decision making processes.  

4. PROPOSED METHODOLOGY 

The proposed approach to model geotechnical variables 
starts considering a separation of the entire domain into con-
sistent geotechnical units, where the rock mass is expected to 
have a similar geotechnical behaviour.  

Within each geotechnical unit, work is done independently. 
For the case of RMR, the variables to be modelled are: Uniaxial 
Compressive Strength (UCS), Fracture Frequency (FF), Rock 
Quality Designation (RQD), Joint Condition (JC) and Water 
Condition (WC). 

The necessary steps are: 

 1. Data preparation: Consists in preparing the database for the 
subsequent analysis. Data has to be divided and grouped for 
each geotechnical unit. Additionally, for each geotechnical 
unit the database is split into two subsets. On one hand, 80 
of the data (first subset) are kept as the modelling subset, 
while the additional 20 (second subset), which has been 
randomly selected, is taken aside for a posterior validation, 
through jack-knife. The relation 80 / 20 is subjective, 
although commonly used in the industry. Other relations 
could be used as long as the number of estimated vs. actual 
values is considered meaningful for validation purposes. 

 2. Exploratory data analysis: Basic statistics and displays are 
prepared for each variable within each geotechnical unit. 
This allows checking the consistency in the definition of ge-
otechnical units and verifying the presence of trends in the 
variables. Since geostatistical simulation is to be used in the 
next step, declustering to correct for spatial bias and normal 
score transformation of the representative distribution of 
each variable is done for every unit. 

 3. Variogram analysis: The spatial correlation of each variable 
within the geological units is assessed by calculating ex-
perimental variograms in different directions. If the correla-
tion shows a consistent behaviour in all directions, an omni-
directional variogram is calculated and modelled with licit 
nested structures. 

 4. Simulation: Each variable is simulated over a lattice of 
points using sequential Gaussian simulation (Deutsch 1998; 
Goovaerts 1997). The simulated realizations are conditioned 
to the available sample data. They reproduce the spatial con-
tinuity and the histogram of each variable within the ge-
otechnical units. Thus, the maps generated have a spatial 
correlation between the points that mimic the correlation 
found in the samples. The pool of realizations provides a 
range of plausible distributions of the actual values within 
the domain, and can be used for uncertainty quantification 
and risk assessment.  

 5. Validation of the simulated results: The resulting realiza-
tions are checked to ensure that, on average, the reproduc-
tion of the histogram and variogram are adequate. Addition-
ally, the realizations must honour the sample data values at 
their locations.  

 6. Post processing: This is possibly one of the most important 
aspects of the methodology. Since RMR is a sum of ratings 
associated non linearly to the actual geotechnical attributes 
measured in rock specimens at a limited number of locations, 
the uncertainty assessment must be done similarly, that is, at 
every point of the lattice, the rating associated to the simu-
lated value of each attribute must be calculated. Each reali-
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zation of the RMR is computed by assigning a rating to each 
one of the simulated values of each variable at every loca-
tion. This can be repeated for all realizations. To obtain an 
estimated model of RMR, the simulated RMR values ob-
tained before are averaged to obtain the estimated RMR 
value over the grid of points. 

 7. Comparison of results: Since 20 of the samples points 
were left aside for validation, and at each one of these points 
an estimated value has been obtained based on the 80 of 
remaining samples, a statistical comparison is done by 
computing the relative error (RE), which is the absolute er-
ror divided by the average value of the variable  

5. CASE STUDY 

The methodology is applied to the data of Chuquicamata 
Underground project. This project provides the continuity to the 
production of the open pit that has been in operation for almost a 
century.  

Chuquicamata, from Codelco Chile, the Chilean govern-
ment-owned mining company, is located in northern Chile and 
has extracted over 2,530 million tons of ore with a mean grade of 
1.53 Cropper (Cu), since 1915. The open pit is expected to end 
its production in 2018, with a final depth of over a thousand me-
ters. Over 2,600 millions tons of resources with a mean grade of 
0.83 Cu are still available under the pit, some of which will be 
recovered by caving methods at a rate of 140,000 tons per day.  

Caving methods take advantage of gravity to break the rock 
mass and move the rock towards the haulage system. It is im-
portant to characterize the rock mass properties in order to pre-
dict the expected infrastructure stability  which includes more 
than 1000 km of tunnels  ore subsidence and final

granulometry of the ore fragments. A poor prediction of the rock 
mass performance translates into raising costs during operation 
due to contingencies that will have to be addressed to ensure a 
continuous production.  

The case study considers 3 geotechnical units, mainly de-
fined by the alteration degree of the rock mass, which was as-
sessed by looking at the mineralogical proportion of alteration 
mineral species. The units used are: 

 1. PEK: East Potassic Porphyry, which means a potasic 
porphyry located at the east side of the mine. 

 2. Q  S  PES: East Sericitic Porphyry  Quartz more abun-
dant than Sericite, which means the union of two bodies, 
PES (i.e. a sericitic porphyry located at the East side of the 
mine) plus the area where the quartz is more abundant than 
the sericite. 

 3. Q  S: Quartz less abundant than Sericite, which means 
more sericite than quartz, i.e. highly altered zone. 

All the geotechnical variables available for each unit were 
estimated in the field by following the criteria given Bienawsky 
(1989). For the RMR calculation, the DS values were calculated 
as the inverse of the FF values.  As an example of the data dis-
tribution, Fig. 1 shows the JC values in each one of the geotech-
nical units. The data was divided according to each unit and split 
randomly into two subsets, 80 and 20 as described in Step 1 
of the methodology. Then the exploratory analysis was carried 
out (Step 2) for each unit, basic statistics of the complete dataset 
(Table 1), graphical displays and maps are computed to ensure 
the data consistency. It is important to highlight that the statistics 
of both sets, 20 and 80, in this case shown to be the same. 
The analysis continues with the quantification of the spatial cor-
relation, through the computation of experimental variograms on 
the normally transformed variables and subsequent fitting of licit 
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Fig. 1  Plan view of the JC samples available for each geotechnical unit: PEK (left), Q  S  PES (centre) and Q S (right) 
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Table 1 Basic statistics of the modelling variables, for each 
geotechnical unit and global statistics 

Variable 

 
UCS 

(MPa) 
FF 

RQD 
() 

JC RMR

G
eo

te
ch

ni
ca

l U
ni

t 

Q
 

 S
 Number of samples 3293 3270 3236 3250 802

Mean 61 7 82 15 61 

Standard deviation 35 10 25 2 9 

Q
 

 S
 

 P
E

S Number of samples 20031 19864 19921 19869 3913

Mean 91 3 94 16 69 

Standard deviation 43 3 12 2 6 

P
E

K
 Number of samples 12725 12609 12490 12479 2595

Mean 130 2 94 16 71 

Standard deviation 42 3 10 2 6 

G
en

er
al

 Number of samples 36049 35742 35647 35597 7310

Mean 104 3 93 16 69 

Standard deviation 49 4 14 2 6 

 

 

nested models (Step 3). These variograms characterize the spatial 
continuity of the variables, hence indicating the information 
quantity provided by the samples to estimate the parameters 
(mean and variance) of the local uncertainty distributions, from 
which the simulated values are drawn. As an example, Fig. 2 
shows the computed variogram for RQD in the geotechnical unit 
Q S PES. As shown in the figure, there in the experimental 
variogram (left), there is an absence of anisotropy and then an 
omnidirectional variogram is calculated to fit an isotropic model 
(right), considering exponential variograms structures in addition 
to a nugget effect.  

One hundred realizations of the four variables on the corre-
sponding geotechnical units are generated using Gaussian simu-
lation over a point grid with spacing of 25  25  25 m (Step 4). 
Figure 3 depicts one realization of the JC parameter. The models 
are combined to obtain the realizations over the entire domain.  

RMR is calculated by adding the ratings of each variable, 
for each one of the realizations (Step 6). Due to the arid climate 
of the project area, WC is not expected to have a significant role 
in this project and for the purpose of this study is assumed to be 
zero. The expected RMR value can be computed as the average 
value over all 100 realizations. Other measures can characterize 
each location, such as the probability of exceeding a given rating, 
or the variance in the RMR value, which might suggest further 
data gathering to reduce the uncertainty. Figure 4 shows the re-
sults for the RMR in the geotechnical unit Q S PES, includ-
ing estimated RMR, variance and the probability of exceeding a 
given number, in this case RMR 70. 

In order to demonstrate the value of the presented method-
ology, the expected RMR value inferred from the realizations, is 
compared at the locations of the validation samples left aside for 
this purpose (Step 7). These are also compared to the averaging 
commonly done for characterizing the geotechnical units. Results 
are presented in Table 2, in terms of relative errors. Differences 
are significant and justify the effort for improving the models for 
geotechnical characterization. 

Table 2 Relative errors for each method computed for the vali-
dation locations by jack-knife. The estimated value of 
each parameter is compared to the actual sample value 

  
RQD UCS FF JC RMR

PEK

Geostatistical 
simulation 

5.2 4.4 47.5 3.4 0.61 

Zoning and 
averaging 

6.7 26.7 71.1 10.5 6.90 

Q S 
PES

Geostatistical 
simulation 

5.9 8.7 47.4 3.6 0.67 

Zoning and 
averaging 

7.7 34.1 68.0 10.3 6.74 

Q S

Geostatistical 
simulation 

19.2 11.5 58.4 4.1 1.20 

Zoning and 
averaging 

28.1 43.3 97.1 11.8 11.00 
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Fig. 2 Variograms for the RQD in the geotechnical unit Q S 
PES. Experimental variogram (up) and omnidirec-
tional variogram fitting an isotropic model (down) 



Egaña and Ortiz: Assessment of RMR and Its Uncertainty by Using Geostatistical Simulation in a Mining Project    89 

 

 

Fig. 3 A plan view of one of the realizations of joint condition parameter 

 

Fig. 4 Plan view of the results for the geotechnical unit Q  S  PES. Estimated RMR (left), variance (centre) and probability of 
RMR 70 (right) 

6. CONCLUSIONS 

The geotechnical behaviour may significantly impact in the 
costs and performance of projects in the mining, hydropower and 
tunnelling industries, among others. Thus, the prediction of the 
geotechnical variables is one of the most relevant requirements of 
such kind of projects and an important effort should be done not 
just during the ground investigation phase, but also in the data-
base processing and interpretation. In this stage it is important to 
consider the peculiarities of the geotechnical variables, which 
may include non-additive nature, directional behaviour and mix-
ing of multiple statistical populations.  

In this paper, we presented a methodology based on geosta-
tistical techniques which provides an interesting alternative to 
more traditional approaches. The proposed approach considered 

the use of Gaussian simulation to characterize all variables in-
volved in the calculation of RMR (rock mass rating) at a point 
support. At every location, the rating was calculated and the clas-
sification was obtained by adding the ratings associated to the 
different variables for each simulated model. The pool of RMR 
values obtained over multiple realizations provides a measure of 
the certainty of the classification and could be used for sampling 
network design, or simply, for risk analysis.  

The proposed method outperformed the more frequently 
used approach of averaging all available data over a volume and 
assigning that value as a constant attribute to the entire geotech-
nical unit. Some of the advantages of the proposed approach are: 
(a) It gives a more precise estimation (lower relative error) by 

taking into account and using the spatial continuity of the 
variables. 
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(b) Besides the estimation, the methodology provides a measure 
of the uncertainty. This can be used for risk analysis or for 
the design of site investigation plans. 

(c) It provides a consistent, repeatable and auditable approach to 
construct a spatial model of rock mass quality for mine de-
sign purposes. 
Overall, the proposed approach leads to a better model. In 

general, as data are more heterogeneous spatially, any local in-
terpolation method done over restricted neighbourhoods will 
provide a better result than zoning into geotechnical units and 
averaging.  

We publish this work in the hope of encouraging geotech-
nical engineers and geologist to explore geostatistics as an alter-
native to the techniques that are in use today. 
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