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APPLICATION OF RANDOM FINITE ELEMENT METHOD TO 
BEARING CAPACITY DESIGN OF STRIP FOOTING 

Giovanna Vessia1, Claudio Cherubini2, Joanna Pieczyńska3, and Wojciech Puła4 

ABSTRACT 

According to the reliability-based design approach suggested by Eurocode 7, the random finite element method has been em-
ployed for calculating the reliability index for the bearing capacity design of strip foundation. Such study has been carried out on 
a well-defined soil from a stochastic point of view, that is the grey-blue clay from Taranto area. The RFEM formulation used has 
been implemented by Griffiths and Fenton but here the authors have focused on a description of the anisotropic random field for c 
and φ design variables. Results clearly show that the introduction of anisotropy in random fields makes RFEM predictions effec-
tive for design purpose because it is less conservative and more realistic than the isotropy assumption. 
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1. INTRODUCTION 
The shallow footing geotechnical design is mainly based on 

the evaluation of the bearing capacity. Random character of 
physical and mechanical soil properties heavily influences the 
randomness of the bearing capacity estimation which is not usu-
ally taken into account into practice. 

New building codes as Eurocodes and Italian TU 2008 have 
absorbed the contribution of about 30 year research in random 
field and nowadays reliability-based design is one of the sug-
gested design approaches. Nonetheless whenever 2D numerical 
simulations are employed for the estimation of the shallow foot-
ing bearing capacity, the random finite element method (RFEM) 
can be used. Such a numerical methodology was introduced by 
Griffiths and Fenton (Griffiths and Fenton 1993; Fenton and 
Griffiths 1993) and employed in many applications (Griffiths and 
Fenton 2001; Fenton and Griffiths 2003; Griffiths et al. 2002; 
Griffiths and Fenton 2004; Fenton and Griffiths 2005; Griffiths et 
al. 2006). By now over 50 papers applying this methodology in 
geotechnics have been reported. RFEM connects random field 
theory (Vanmarcke 1984) and deterministic formulation of the 
finite element method by taking into account mean value, stan-
dard deviation, correlation length of strength and load design 
parameters. Thus, implementing Terzaghi’s formula (Terzaghi 
1943) into RFEM the bearing capacity can be calculated as fol-
lows: 

1   
2f c qq c N q N BNγ= + + γ  (1) 

where qf  is the ultimate bearing stress, c  is the cohesion, q is the 
overburden load due to foundation embedment, γ is the soil unit 
weight, B is the footing width, and Nc, Nq and Nγ are the bearing 
capacity factors. To simplify the analysis and focus on the ran-
dom character of soil parameters Eq. (1) is accordingly simplified 
(neglecting the contributions of both the footing embedment and 
the soil weight) for the case of drained conditions: 

f cq c N=   (2) 

where the Nc expression is given below (Bowles 1996): 
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In this paper the authors focused their attention on analyzing the 
influence of some relevant aspects of the random characterization 
of soil by means of the numerical algorithm created by Fenton 
and Griffiths (2003), that is: 
• the rule of anisotropy in random field approach to soil pa-

rameters, implemented by analyzing different values of corre-
lation length along vertical and horizontal direction;  

• verification of the worst case, which means that in every single 
situation it is possible to assign the characteristic value of cor-
relation length corresponding to the most conservative evalua-
tion of the bearing capacity; 

• to investigate random variability of soil properties based on 
statistical data resulting from real soil testing. The soil under 
investigation is the grey-blue clay from South East of Italy. 

2. THE RANDOM FIELD FORMULATION FOR 
SOIL  

The random soil model proposed by Fenton and Griffiths 
(2003) describes strength soil parameters by means of isotropic 
two-dimensional random field by local averaging approach 
(Vanmarcke 1984).  

Two random field variables are taken into account in this 
paper, that is c and φ.  
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The cohesion random field is assumed to be lognormal dis-
tributed with mean μc, standard deviation σc and different spatial 
correlation lengths θcy and θcx in vertical and horizontal direction, 
respectively.  

Theoretical aspects of the anisotropic random field assump-
tion have been analyzed in earlier papers (Pula and Shahrour 
2003; Pula 2004).  

Lognormal random field is derived from a normally distrib-
uted random field Gln c(x), having zero mean, unit variance and 
spatial correlation length θln c transformed as follows: 

{ }ln ln ln( ) exp ( )c c cc G= μ + σx x  (4) 

where x is the spatial position at which c is calculated and μln c 
and σln c parameters are obtained as mean and standard deviation 
values of cohesion function: 

2
2
ln 2ln 1 c

c
c

⎛ ⎞σ
σ = +⎜ ⎟

μ⎝ ⎠
  (5)  

2
ln ln

1ln
2c c cμ = μ − σ   (6) 

Such a transformation is very useful because there are many ef-
fective methods for generating normal field and then using 
Monte Carlo simulation. Realizations of cohesion field have been 
calculated after having generated the realization of normal field 
using the transformation in Eq. (4). Correlation structure of cohe-
sion lognormal field Gln c(x) is expressed by determining the cor-
relation function, whose parameters are correlation lengths along 
the two directions θ(ln c)y and θ(ln c)x.   

In this paper the following correlation function has been as-
sumed: 

2 2

2 1
ln

(ln ) (ln )

2( ) 2( )expc
c x c y

⎛ ⎞⎛ ⎞ ⎛ ⎞τ τ⎜ ⎟ρ = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟θ θ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7) 

where τ1 = y2 − y1 and τ2 = x2 − x1 are the two components of the 
absolute distance between the two points in 2D space where the 

correlation function is calculated by taking into account the ani-
sotropic character of the random field (θ(ln c)y and θ(ln c)). It is 
worth mentioning that such a correlation function works in a 
normal random field ln c. θ(ln c)y and θ(ln c)x values are derived 
from θcy and θcx values.  

Correlation lengths θcy and θcx can be drawn from in situ 
tests. One method for converting soil testing results into correla-
tion length is the moment method (Baecher and Christian 2003). 
Such methodology has been used in this paper. 

The second random field considered in this paper is the fric-
tion angle. Since friction angle values change within a bounded 
interval, neither normal nor lognormal distributions are appropri-
ate models for random variable. Fenton and Griffiths (2003) rep-
resented bounded distributed fields as a bounded distribution 
which resembles a beta distribution but arises as a simple trans-
formation of a Gφ(x), according to: 

min max min
( )1( ) ( ) 1 tanh  

2 2
sG x

x φ⎧ ⎫⎛ ⎞⎪ ⎪φ = φ + φ − φ +⎨ ⎬⎜ ⎟π⎪ ⎪⎝ ⎠⎩ ⎭
 (8) 

where φmin and φmax are the minimum and maximum values of 
friction angle, respectively, and s is the scale factor depending on 
standard deviation. 

Shapes shown in Fig. 1 represent probability distribution 
functions of φ variable.  In the graph, φ functions are reported 
for three different scale factor values s. For s values greater than 
5 frequency distribution leads to a U-shaped function which is 
unrealistic in current situations. The mean distribution is in the 
middle of the interval [φmin, φmax]. Relationship between the stan-
dard deviation and the scale parameter s has no analytic form. It 
can be obtained by numerical integration or by Taylor’s expan-
sion. The first order approximation leads to: 

( )max min
0 0

1 2( )
2 exp(2 ) exp( 2 ) 2

s
φσ ≈ φ − φ

π φ + − φ +
 (9) 

where φ0 is the mean value of the friction angle. Correlation 
function and correlation length values have been estimated as in 
the case of cohesion. 

3. THE CASE STUDY OF ITALIAN BLUE-GREY 
CLAY 

In the study that follows, the case of Taranto blue-grey clay 
from South East of Italy (Fig. 2) has been considered. Such soil 
was widely described in terms of deterministic and random prop-
erties in Cherubini et al. (2007). 

Taranto clays are stiff overconsolidated clays of mainly il-
litic and kaolinitic mineralogical composition. Figure 3 shows the 
stratigraphies corresponding to the 15 performed boreholes 
which show the presence of two clay horizons: the upper weath-
ered yellow clay and the lower blue-grey clay. 

As a matter of fact, this soil is characterized, on a regional 
scale, by a brownish-yellow upper horizon and a grey lower ho-
rizon corresponding to the same grey-blue clay formation. Both 
clays can vary from clayey silt to silty clay. The vertical strength 
variability in Taranto clays has been defined by means of statis-
tical treatment of data coming from CPTs. In Table 1 the trend 
and the scale of fluctuation of the cone bearing profiles along the 
five boreholes for both the upper (a) and the lower (b) clays are 
listed. 
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Fig. 1 Shapes of friction angle distribution of bounded type. The 
curve corresponding to s = 2.27 (σφ = 4.8°) is the density of 
the distribution used in this paper for computations 
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Fig. 2  Geographical set of Taranto grey-blue clay 
 

 
Fig. 3  Stratigraphies from cone penetration testing 

The residuals were obtained by removing a low-order poly-
nomial trend, no higher than a quadratic, by regressing the cone 
bearing values using the ordinary least-square (OLS) method. 
Furthermore, geostatistical boundaries of the two Taranto clays 
were investigated by means of intraclass correlation coefficient 
RI (Wickremesinghe and Campanella 1991). 

Figure 4 shows an example of RI profiles coming from 
processing the qc, fs profiles along G1. Results from other profiles 
confirm the lithological boundary at about 11 m. The whole ran-
dom field characterization has been synthesized in Table 2. 

The mean cohesion μc = 36 kPa and standard deviation co-
hesion σc = 20 kPa have been kept constant, while the friction 
angle has been defined as being bounded distributed with lower 
limit φmin = 5°, upper limit φmax = 35°, mean value μφ = 20°, 
standard deviation σφ = 4.8° and scale parameter s = 2.27. 

Table 1 Trend and scale of fluctuation from CPT within upper 
and lower clay 

Cone 
penetration Trend Scale of fluctuation 

(m) 
Upper clay 

G1 y = 54.671 × 2 − 21.21x + 5301 0.195 
G3 y = 12.44 × 2 + 113.06x + 2950 0.401 
G6 y = 40.713 × 2 − 439.7x + 5601 0.207 
G7 y = 73.690 × 2 − 172.2x + 9753 0.401 

G15 y = 11.027 × 2 + 212.3x + 2541 0.436 
Lower clay 

G1 y = 149.11x + 4732 0.536 
G3 y = 319.58x + 1722 0.287 
G6 y = 201.29x + 3700 0.720 
G7 y = 201.14x + 4036 0.269 

G15 y = 203.34x + 3699 0.185 

4. RANDOM FINITE ELEMENT METHOD 

The bearing capacity analysis carried out in this paper uses 
an elastic perfectly plastic stress strain law with a classical Mohr 
Coulomb failure criterion according to Fenton and Griffiths 
(2003) work. Plastic stress redistribution is accomplished using a 
viscoplastic algorithm. The program uses 8 node quadrilateral 
elements and reduced integration in both the stiffness and stress 
redistribution parts of the algorithm. The theoretical basis of the 
method is described in detail in Chapter 6 of the text by Smith 
and Griffiths (1998). The finite element model incorporates five 
parameters: Young’s modulus (E), Poisson’s ratio (ν), dilation 
angle (ψ), shear strength (c), and friction angle (φ). In the present 
study E, ν and ψ are held constant (at 910 MPa, 0.3, and 0, re-
spectively) while c and φ are randomized. Setting the dilation 
angle to zero means that there is no plastic dilation during yield 
of the soil. This is the case in the following computations. The 

Pliocene-Quaternary  
marine complexes 
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Fig. 4 Intraclass correlation coefficient profiles of cone bearing, 

sleeve friction and soil behaviour index along G1 in situ 
CPT test 

Table 2  Random mechanical characterization of grey-blue clay 

Variable Probability 
distribution 

Mean 
μ 

Standard 
deviation 

σ 

Scale of fluctuation
θ 

c Lognormal 36 kPa 20 kPa 0.2, 0.3, 0.5, 0.7 m

φ Bounded  
(see Eq. (8)) 20° min   max 

5°    35° 0.2, 0.3, 0.5, 0.7 m

γ Constant 19 kN/m3 − − 
 

 
Young’s modulus governs the initial elastic response of the soil, 
but does not affect the bearing capacity. Thus such elastic soil 
parameter has been used for pre-analyzing the system. The finite 
element mesh consists of 1000 elements, 50 elements wide by 20 
elements deep (Fig. 5).  

Each element is a square of side length 0.1 m and the strip 
footing occupies 10 elements, thus giving a width of B = 1 m. 
Since the depth of the model is only 2B some boundary effect can 
appear. In order to check the correctness of the mesh model an 
analysis of the mesh influence on the bearing capacity mean 
value has been carried out. The results are shown in Appendix 1. 
The random fields in this study are generated using the Local 
Average Subdivision (LAS) method (Fenton and Vanmarcke 
1990). Cross-correlation between the two soil property fields (c 
and φ) is neglected in the present study (see Appendix 2). Nu-
merical analyses of the bearing capacity have been carried out 
according to the following steps: 

 
Fig. 5 Mesh model used in stochastic bearing capacity 

predictions (After Griffiths and Fenton 2001) 

1. At first, the accuracy of the calculation of the first two mo-
ments (mean and variance) of the bearing capacity has been 
assessed. Thus numerical simulations by means of Monte 
Carlo method were made with a variable number of realiza-
tions. Results for 300, 500 and 1000 realizations are reported 
in Fig. 6. There, the confidence intervals considered with se-
lected exceeding probability α = 0.05 are as follows: lower 
bound of mean value: 450.22 kPa, upper bound of mean 
value: 481.00 kPa; lower bound of standard deviation: 164.67 
kPa, upper bound of standard deviation: 186.46 kPa. Accord-
ingly the optimum number of realizations turned out to be 
300; whereas more than 1000 realizations are needed to de-
termine the approximate form of the bearing capacity distri-
bution. 

2. At second, the bearing capacity of the system has been calcu-
lated for an isotropic case selecting 7 values of fluctuation 
scale. The values 0.2, 0.3, 0.5, 0.7 m have been reported in the 
soil testing described in Table 2. Values 1.0, 1.5, 2.0 m have 
been considered only to catch a trend in the results obtained. 
According to the assumptions listed in paragraph 3, the corre-
lation lengths of cohesion and friction angle were taken equal. 
Results from numerical computations are reported in Table 3.  

The results are also presented graphically in Figs. 7 and 
8. It is important to point out that the initial value of the 
correlation length 0.2 m is comparable with the size of the 
single element of the mesh (0.1 m). This implies strong 
averaging of random field fluctuations. As a consequence we 
may expect inaccuracy with the bearing capacity value in this 
case. However, the average value, as well as the coefficient of 
variation of the bearing capacity corresponding to 0.2 m of 
the correlation length, fit well in with the trend obtained from 
other results. The isotropic case under consideration (θy / B 
= θx / B) has shown the so-called “worst case” for mean value. 
Figure 7 shows the value of normalized fluctuation scale 
equal to 1 by which the minimal value of bearing capacity 
appears. Such outcome is in accordance with the observations 
made in papers by Griffiths and Fenton (2001) and Fenton 
and Griffiths (2003). 

The presence of such minimum value is recognized to be 
an important information, which allows to determine the “true 
value” of correlation length even when not enough measure-
ments  

D
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Fig. 6 Testing of convergence rate for mean value of bearing 
capacity. Runs have been started from three different 
seeds 

 

Fig. 7 Mean value of bearing capacity versus normalised fluc-
tuation scale. The parameter s is the scale parameter of 
friction angle distribution. The value s = 2.27 corresponds 
to σφ = 4.8° assumed for the computations 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.2 0.3 0.5 0.7 1.0 1.5 2.0 θ/B

C
.O

.V
.q

fi

s=2,27

 

Fig. 8 Coefficient of variation of bearing capacity versus 
normalised fluctuation scale 

Table 3 Mean values, standard deviations and variation coeffi-
cients of bearing capacity resulting from isotropic case 

θx 
(m) 

θy 
(m) 

μqfi 
(kPa) 

σqfi 
(kPa) C.O.V.qfi

Reliability 
index 

β 
0.2 0.2 382.63 31.67 0.083 7.8 
0.3 0.3 372.37 41.97 0.113 5.5 
0.5 0.5 362.09 58.72 0.162 3.6 
0.7 0.7 357.99 72.51 0.203 2.8 
1.0 1.0 356.40 89.80 0.252 2.2 
1.5 1.5 359.10 112.67 0.314 1.7 
2.0 2.0 364.07 129.69 0.356 1.6 

 
 

from soil testing are available. Such an approach has a draw-
back, that is the random bearing capacity predictions are 
prevalently influenced by standard deviation and bearing ca-
pacity coefficient of variation. As standard deviation of 
bearing capacity and its coefficient of variation are concerned 
both curves increase with the ratio θy / B (Fig. 8). 

It means there are no any local minima, which can be 
considered as the “worst case”. It is interesting to highlight 
that the minimum value of the mean bearing capacity has 
been accomplished when the ratio θ/B equals one. It is worth 
mentioning, however, that the value θ = 1.0 has been added 
“artificially” in this study, because it has not been observed in 
the soil testing described in paragraph 3. 

3. As third step, computations for anisotropic case θy / B ≠ θx / B 
have been carried out. The cases investigated are obtained by 
changing the correlation lengths in both horizontal and verti-
cal directions. In vertical direction, four values of correlation 
length θy have been considered: 0.2, 0.3, 0.5, 0.7 m and addi-
tionally 1.0, 1.5 and 2.0 m. 

In horizontal direction, five values of θx have been investi-
gated 1, 5, 10, 30, 50 m. As in the previous case, the correlation 
lengths of cohesion and friction angle were taken as equal. Re-
sults are shown in Table 4. And graphically presented in Figs. 9, 
10 and 11. 

It is easy to notice from Table 4 that the coefficient of varia-
tion of friction angle strongly affects standard deviation value 
and bearing capacity coefficient of variation. Standard deviation 
raises as the vertical correlation length increases as a matter of 
fact when correlation length increases the trend in mean and 
standard deviation of bearing capacity gets flatter. One can ob-
serve that the effect of horizontal fluctuation scale is important. 
However for larger values, which are realistic in natural soils, the 
bearing capacity coefficient of variations seem to be not very 
sensitive to the increase in the horizontal scale value. This result 
can be valuable if we are not able to precisely determine the 
horizontal fluctuation scale. Moreover, from Fig. 9 another rele-
vant difference between isotropic and anisotropic case can be 
figured out: the worst case in isotropic case falls constantly at  
θy / B = 1. Such outcome is not true in the anisotropic case: It 
changes according to θx values in θy / B range between 0.3 and 0.5. 
These values cannot be predicted in advance and are more fre-
quently calculated for natural soils with respect to the one in iso-
tropic case. 
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Table 4  Mean values, standard deviations and coefficients of variation obtained in anisotropic case 

θy (m) 
  

θx 

(m) 0.2 0.3 0.5 0.7 1.0 1.5 2.0 

μqfi (kPa) 361.97 355.58 351.86 352.73 356.40 363.30 369.12 

σqfi (kPa) 52.70 60.88 72.33 80.77 89.80 100.08 106.72 

C.O.V.qfi  0.15 0.17 0.21 0.23 0.25 0.28 0.29 

Reliability index β 

1 

4.0 3.3 2.7 2.4 2.2 2.1 2.0 

μqfi (kPa) 369.76 365.01 362.44 363.28 366.99 372.31 376.46 

σqfi (kPa) 77.01 90.15 109.25 123.31 138.28 154.50 164.21 

C.O.V.qfi  0.21 0.25 0.30 0.34 0.38 0.41 0.44 

Reliability index β 

5 

2.9 2.4 1.9 1.6 1.5 1.4 1.3 

μqfi (kPa) 376.99 373.87 373.69 376.67 381.80 391.07 397.71 

σqfi (kPa) 83.04 97.19 118.21 134.69 153.96 179.26 194.88 

C.O.V.qfi  0.22 0.26 0.32 0.36 0.40 0.46 0.49 

Reliability index β 

10 

2.8 2.3 1.9 1.7 1.5 1.3 1.3 

μqfi (kPa) 384.71 383.30 386.19 391.55 399.76 411.18 420.42 

σqfi (kPa) 86.99 101.77 123.58 140.72 160.46 185.61 206.07 

C.O.V.qfi  0.23 0.27 0.32 0.36 0.40 0.45 0.49 

Reliability index β 

30 

2.8 2.4 1.9 1.8 1.6 1.5 1.4 

μqfi (kPa) 386.59 385.80 389.63 395.59 404.68 417.64 428.23 

σqfi (kPa) 88.08 103.20 125.31 142.25 162.29 186.21 206.77 

C.O.V.qfi  0.23 0.27 0.32 0.36 0.40 0.45 0.48 

Reliability index β 

50 

2.8 2.4 2.0 1.8 1.6 1.5 1.4 

 

 
Fig. 9 Mean value of bearing capacity versus ratio θy / B for 

different values of horizontal fluctuation scale 

5. PROBABILITY DISTRIBUTION OF 
BEARING CAPACITY 

Finally, the probability distribution of the bearing capacity 
in grey-blue clay has been estimated in order to have enough 
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Fig. 10 Standard deviation of bearing capacity versus ratio 

θy / B for different values of horizontal fluctuation 
scale 

information for applying reliability-based design approach. Log-
normal charts and Komogorov-Smirnov, Chi-square distribution 
and Anderson-Darling tests have been used to this end.  

Here statistics for performing the above mentioned tests are 
reported according to 2000 realizations just for the case of 30 m 
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Fig. 11 Coefficient of variation of bearing capacity versus ratio 

θy / B for different values of horizontal fluctuation scale 

horizontal and 0.7 m vertical scale of fluctuation (Table 5) 
whereas Fig. 12 show results of the Lognormal chart according to 
the numerical values summarized in Table 6. 

Figures 13 and 14 show the cumulative distribution function 
and the density probability distribution of the tested bearing ca-
pacity data. 

Such results agree with the ones demonstrated by Griffiths 
and Fenton (2003). In order to show the direct usage of RFEM 
results in reliability-based design of the strip foundation the log-
normal distribution of bearing capacity is here used. Accordingly, 
the probability value associated with the safety margin can be 
calculated as follows: 

ln( )

ln( )

ln  ( )
 [ 0] fin

fin

d q

q

Q
P SM

⎛ ⎞− μ
< = Φ ⎜ ⎟⎜ ⎟σ⎝ ⎠

 (10) 

where the safety margin SM = Load-Resistance = Qd − qfin: Qd is 
the stress design value from the upper structure analysis and qfin 
is the bearing capacity of the strip foundation. According to Cor-
nell definition of reliability index β, the expression on the right 
hand side of Eq. (10) can be assumed equal to −β. Thus, let us 
consider a value of Qd = 200 kPa for the case of a three-storey 
building with foundation width B = 3 m, then β has been calcu-
lated in Tables 3 and 4 according to the ratio in Eq. (10). Com-
paring results from isotropic and anisotropic random field char-
acterization (Fig. 15) three main elements can be pointed out: 
1. Reliability index β decreases when fluctuation scales along x 

and y directions increase: Differences can be seen in β values 
which are less conservative in the isotropic case. 

2. Isotropic case is much more sensitive to the increases in the 
scale of fluctuation than anisotropic case: as a matter of fact, 
when the field is anisotropic all the cases considered give quite 
the same β values as θy increases and the reduction in β values 
is about 2 units. Conversely, for the isotropic field as θy varies 
from 0.2 to 2.0 β values reduce from about 8 to less than 2. 

3. In anisotropic case β values is more influenced by standard 
deviation than by θx values. Accordingly, in Fig. 15, β values 
for θx = 50 are higher than β values for θx = 5 although such 
differences are negligible. It also means that when θx gets 

Table 5  Bearing capacity main statistics 

Minimum (kPa) 78.35 
Maximum (kPa) 995.6 

Range (kPa) 917.25 
Median (kPa) 361.1 

Arithmetic mean (kPa) 385.32 
Geometric mean (kPa) 361.67 

Mean square (kPa) 19356 
Variance 19366 

Stand. Deviation (kPa) 139.16 
Coef. of variation 0.36116 

Third moment 2.48E+06 
Stand. skewness 0.92249 
Fourth moment 1.57E+09 
Stand. kurtosis 4.201 

Variance of mean 9.6782 
Var. of variance 1.24E+15 

Var. of 3. moment 8.03E+10 
Var. of 4. moment 3.08E+16 

Table 6 Tests for the estimation of the bearing capacity 
probability distribution 

 
 

Parameter estimation for the case
of 30 m horizontal and 0.7 m 
vertical scale of fluctuation 

Selected estimation method Method of moments Least square
Selected stochastic model Lognormal (3) 
Parameter 1 [xi] 362.405 361.667 
Parameter 2 [delta] 0.350151 0.360266 
 Testing 
Selected testing method Kolmogorov-Smirnov test 
Significance level 0.62055 0.79883 
Critical significance level 0.05 0.05 
 The hypothesis should not be rejected.
Selected testing method Chi-square distribution test 
Number of classes used in test 44 44 
Significance level 0.29427 0.07958 
Critical significance level 0.05 0.05 
  The hypothesis should not be rejected.
Selected testing method Anderson-Darling test 
Significance level > 0.15 > 0.15 
Critical significance level 0.05 0.05 
  The hypothesis should not be rejected.

 

 
much higher than θy (from double to two orders of magnitude) 
its influence on β values becomes negligible with respect to θy. 
Such outcomes show the ability of RFEM method to be ap-
plied directly to strip foundation design but anisotropic random 
field shall be considered because the isotropic simplification is 
neither conservative nor realistic. 
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Fig. 12  Lognormal probability chart corresponding to the dataset of bearing capacity in Tables 5 and 6 

 
Fig. 13  Lognormal cumulative distribution function of the dataset of bearing capacity in Tables 5 and 6 

 
Fig. 14  Lognormal density probability distribution of the dataset of bearing capacity in Tables 5 and 6 
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Fig. 15  Reliability index versus vertical scale of fluctuation 

6. CONCLUDING REMARKS 

The RFEM method has been implemented for geotechnical 
designing by taking into account the stochastic random fields of 
soil parameter by local average method. Such method estimates 
the bearing capacity mean and standard deviation values for 
calculating reliability index values according to the 
reliability-based design method suggested by Eurocode 7. The 
study carried out clearly shows that RFEM can be directly 
applied for geotechnical design but, in the case of the bearing 
capacity calculation, the simplification of isotropic random field 
cannot be accepted for design purposes. Reliable information 
about coefficient of variation and correlation length of the soil 
parameters are thus needed for bearing capacity predictions in 
design practice. 

APPENDIX 1 

In order to evaluate the influence of the mesh size on the 
mean value of the bearing capacity simulations with different 
numbers of elements in the x and y-directions have been carried 
out. Figure 16 presents the bearing capacity average versus the 
number of elements in x direction. 

As for computations, 20 elements in y-direction have been 
incorporated for a number of elements less or equal to 50 in 
x-direction, while for a number of elements above 50 (in 
x-direction) 30 elements in y-direction have been applied. It can 
be observed that for a number of element greater than 50 (in 
x-direction) the average of the bearing capacity becomes stable 
and at 50 reaches its minimal value. Similar effects have been 
observed in the case in which the number of elements in 
y-direction is changed. The effects are illustrated in Fig. 17. 

All computations in this case have been carried out with 50 
elements in x-direction. The stabilisation begins at 15, but the 
minimal value is observed at 20. According to what has been 
demonstrated in this Appendix, the number of realisations in the 
simulation process is 300. The above results allow to consider the 
mesh of size 50 × 20, accepted in the paper, as the optimal one. 

APPENDIX 2 

Since a cross-correlation, usually negative, has been ex-
perimentally established for many soil types, the influence of 
such correlation has been investigated. Namely, the computations 

have been repeated for three negative correlation coefficients:   
ρ = −0.7, ρ = −0.5, ρ = −0.3. Examples of results (for the case of 
correlation lengths θx, θy) are presented in Fig. 18 (mean values) 
and Fig. 19 (standard deviations).  

It is easy to see that for lack of correlation the average is the 
lowest and the standard deviation is the greatest. Therefore in the 
paper the zero-value cross-correlation case has been selected for 
computational analyses. 
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Fig. 16 Bearing capacity average versus number of element in 
x-direction 
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Fig. 17 Bearing capacity average versus number of element in 
y-direction 
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