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ABSTRACT 

In this study, the SPT-N value of soil is modeled using five cutting-edge machine learning procedures, comprising multilayer 
perceptron artificial neural networks, random forests, ridge regression, support vector regressors, and extremely gradient boosting. 
The hyper-parameters of these algorithms are optimized utilizing the randomized search cross-validation (RSCV) algorithm. The 
mean average error, root mean square error, R-squared, and variance accounted for values are applied as evaluation indicators to 
assess the efficiency of optimized machine learning procedures on a dataset with 1113 data. The comparison shows that the RSCV 
approach is effective in the hyper-parameter tuning and that the optimized machine learning procedures have tremendous prospects 
to evaluate the SPT-N value of soils. Among the five Optimized Machine Learning Models (OMLs) used for the testing dataset, 
Random Forrest (RF) and Support Vector Regression (SVR) display excellent performances (R2 = 0.9205 and 0.8956, respectively). 
The depth and CPT cone resistance are the variables that have the greatest influence on determining the SPT-N value of soil with a 
variable importance score of 24.06% and 23.61%, respectively. The performance of RF and SVR is compared with the existing 
models. It is found that the OML models such as RF and SVR outperform the existing models. 

Key words: Cone penetration test (CPT), SPT-N value of soils, optimized machine learning methods, randomized search cross-
validation (RSCV) algorithm.

1.  INTRODUCTION 
Due to their lower costs, in-situ investigative techniques like 

the standard penetration test (SPT) and cone penetration test (CPT) 
are widely used in projects of all sizes. The fundamental drawback 
of these approaches is that they rely on correlations for engineering 
design rather than explicitly measuring any soil parameters. To es-
timate soil parameters utilizing in situ techniques using infor-
mation gathered in various locations, many correlations have been 
devised. However, because there aren’t any other affordable alter-
natives, their use has spread rapidly. 

Numerous scholars have looked into the relationships between 
SPT-N and CPT parameters under various geotechnical conditions. 
For instance, based on a sizable dataset, Robertson and Campanella 
(1983) established a link between SPT-N values and cone tip re-
sistance (qc) for sands. They developed an empirical equation that is 
frequently used to calculate tip resistance from SPT-N data. Corre-
lations between SPT-N and CPT parameters are more complicated 
in cohesive soils because of the impact of variables including soil 
type, plasticity, and sensitivity. Mayne and Kulhawy (1982) concen-
trated on correlations between SPT-N and other factors, such as fric-
tion angle (φ) for cohesive soils. To address the impact of regional 
soil conditions, regional correlations between SPT-N and CPT pa-
rameters have been constructed for particular places. For instance, 
researchers have created correlations particular to regional soil types 
and geotechnical features in studies carried out in various parts of 

the world. According to Suzuki et al. (1998), cone penetration re-
sistance is correlated with soil physical characteristics, SPT-N value, 
and shear wave velocity. Robertson’s proposed soil behavior type 
index Ic, fines content, and mean grain size are used as indexes to 
categorize soil types. They concluded that the fines concentration 
and mean grain size are well correlated with the soil behavior type 
index Ic and the CPT-SPT resistance ratio (qt/N) varies not only with 
soil type but also with SPT-N value or CPT qt-value. 

In Adapazari, Turkey, Kara and Gündüz (2010) investigated 
the relationship between CPT and SPT. They examined data from 
65 SPT boreholes and 47 CPT locations while taking into account 
the varied soil composition. The correlation coefficients were 
slightly lower than those reported in the literature after the N val-
ues were adjusted for energy efficiency. When analyzing filtered 
data, the coefficients became more accurate. For the sands of Oil 
sands, researchers Elbanna et al. (2011) examined the relationship 
between SPT and CPT. Reviewing and evaluating the precision of 
these correlations, particularly for Muskeg River Mine (MRM) 
tailings sand, was their main objective. They also contrasted the 
relationships with measurements from other oil sands tailings sites 
and the average particle size (D50). The investigation was con-
ducted at the MRM oil sand mine near Fort McMurray in northern 
Alberta. In a silty sand deposit in Egypt, Shahien and Albatal 
(2014) also looked into the relationship between SPT and CPT to 
determine the correlation between the two tests, considering grain 
sizes, fines content, and soil behavior type index. The study high-
lighted the cost-effectiveness and ease of use of CPT while noting 
the consistency and standardization of SPT. The N value in SPT 
was discovered to be influenced by elements such as borehole di-
ameter, water level, hammer type, and lifting procedures. When 
establishing the soil behavior type index for CPT, the normalised 
tip resistance and friction ratio was the main considerations. Strat-
ification, soil type, grain characteristics, soil density, and the 
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presence of gravel had an impact on the association between SPT 
and CPT. In Goluck, Turkey, Asci et al. (2014) looked into the 
relationship between SPT and CPT data. They looked at several 
soil types and saw that the correlation coefficients varied. It has 
been observed that the correlation coefficient for sandy silt in their 
particular research region was highest. Based on a database of in-
situ tests in China, Zhao and Cai (2015) used statistical and regres-
sion methods to evaluate the SPT-CPT association. There are two 
suggested correlation equations for the SPT-N value and CPT cone 
tip resistance. For the evaluation of the liquefaction potential, the 
equations are used. SPT-CPT correlation is examined for three ef-
fect parameters; including soil type, mean particle size, and fine 
content. Similarly, Demir and Sahin (2022) investigates and com-
pares the performance of three tree-based Machine Learning (ML) 
methods, Canonical Correlation Forest (CCF), Rotation Forest 
(RotFor), and Random Forest (RF), for predicting the liquefaction 
potential of soils based on the cone penetration test (CPT) case 
history datasets collected from previous studies in Turkey. Demir 
and Sahin (2023) also presents the prediction of soil liquefaction 
from the SPT dataset by using relatively new and robust tree based 
ensemble algorithms, namely Adaptive Boosting, Gradient Boost-
ing Machine, and eXtreme Gradient Boosting (XGBoost). A total 
of 620 SPT records with 12 parameters collected from two major 
Turkish earthquakes in 1999 are considered for this study.  

Jarushi et al. (2015) examined the relationship between SPT 
and CPT in various sandy soils in Florida, USA. The study estab-
lished empirical relationships for evaluating soil performance by 
using data from initiatives funded by the Florida Department of 
Transportation (FDOT). The results showed that in sandy soils, 
SPT-N value, CPT tip resistance qc and sleeve resistance fs had a 
positive linear association. The alteration of the soil’s permeability, 
compressibility, fines concentration, and qc/N ratio all had an im-
pact. Zhao et al. (2021) employed a database of about 900 data 
pairs from 230 sites in the South Island of New Zealand that were 
co-located cone penetration test (CPT) soundings and boreholes 
with standard penetration tests (SPT). This study evaluates the ap-
plicability of several SPT-CPT correlations that are already in ex-
istence. Correlations based on the soil behavior type index (Ic) us-
ing CPT data as well as simple linear SPT-CPT correlations for 
various soil types were evaluated. For an alluvial soil deposit in 
Dhaka, Arifuzzaman and Anisuzzaman (2022) sought to present 
connections between the SPT-N value, cone tip resistance (qc), 
sleeve friction resistance (fs), soil behavior index (Ic), and mean 
particle size (D50). It is discovered that the coarser soil layers ex-
hibit a coefficient of correlation (R2) of 0.7106, which imply a re-
liable association for the relationship between equivalent SPT-N60-
value and SPT-N60-value. Additionally, there is a high correlation 
between cone tip resistance (qc) and SPT-N60-value that is ex-
tremely close to the Meyerhof correlation that was proposed. Ha-
san (2023) aimed to establish empirical correlations for the SPT-
N value and soil unit weight with the CPT parameters for the 
Dhaka Metropolitan Development Plan (DMDP) area in Bangla-
desh. The collected data includes SPT-N values, CPT parameters 
(cone tip resistance, sleeve friction), unit weight of soil, soil type, 
moisture content, etc. Considering depth, cone tip resistance and 
side friction as independent variables and SPT-N value as the de-
pendent variable, a multiple linear regression equation has been 
developed, where obtained R2 is only 0.6399. Table 1 presents 
summary of all those above findings. In addition works of several 

other researchers’ such as Akca (2003), Lingwanda et al. (2015), 
Dos Santos and Bicalho (2017), Khodaparast et al. (2020) and 
Khan et al. (2022) have been presented in Table 1. 

Tarawneh (2014) carried out a study on silty sand to sandy 
silt soils in the UAE. The study concentrated on creating models 
to forecast N-values from CPT data. The study used SR and MLR 
methodologies and comprised 66 CPT-SPT couples. The rod en-
ergy ratio was used to normalize the SPT-N values because the 
CPT data fell inside defined soil behavior areas. In comparison to 
MLR, symbolic regression models also demonstrated improve-
ment. Fernando et al. (2021) examined using an ANN to predict 
SPT values based on CPT data and soil physical parameters on 
cohesive soils with and without data normalization. The tip re-
sistance, sleeve resistance, effective soil overburden pressure, liq-
uid limit, plastic limit, and percentage of sand, silt, and clay are 
the input data used in this study. The outcomes demonstrated that 
the ANN could successfully predict events on networks with and 
without data standardization. The ANN without data normaliza-
tion displayed a lower error value in this investigation than the 
ANN with data normalization, it was discovered. 

It is observed from the above studies that very limited re-
searches have been undertaken using machine learning models to 
estimate the SPT-N value of soil from CPT parameters. Only Ar-
tificial Neural Networks is mainly used for particular type of soils. 
Other machine learning models like Random Forest (RF), Support 
Vector Machine (SVM), Ridge Regression, Extreme Gradient 
Boosting (XGB) etc. have not been used to predict SPT-N value 
from CPT parameters. However, there are still a number of issues 
that require correct resolution before applying the ML techniques 
for estimating SPT-N value from CPT parameters, such as: (1) The 
viability of other methods has not been extensively investigated, 
and only a small number of sophisticated ML algorithms have 
been used in SPT-N value estimate; (2) before using ML algo-
rithms on datasets, it is essential to correctly adjust their hyper-
parameters; and (3) there is still a need for an organized, thorough 
comparison of the existing ML techniques. The efficacy of modern 
ML algorithms when used to estimate SPT-N value may differ sig-
nificantly, necessitating further research.  

This paper employs five optimized machine learning (OML) 
techniques in a comparative manner, utilizing the programming 
language Python, to fill a gap in the existing papers concerning the 
estimation of SPT-N value. The extreme gradient boosting (XGB), 
multilayer perceptron artificial neural network (MLPANN), 
RIDGE regression (RIDGE), random forest (RF), and support vec-
tor machine (SVM) are the five ML algorithms are used for this 
purpose. In this study, a recently collected 54 CPT-SPT collocated 
points having 1113 dataset have been used. The depth of the soil 
sample collected (D), moisture content of the soil sample (MC), 
fine content of the soil sample (FC), cone tip resistance (qc) and 
cone local resistance (fs) are the input features of the algorithms 
and will be discussed in the data processing section. Mean absolute 
error (MAE), root mean square error (RMSE), R-squared value 
(R2) and variance accounted for (VAF) are used as performance 
indicators for evaluating the efficiency of the five ML methods. 
Investigations on the comparative significance of important input 
variables for SPT-N value are also conducted. The limitations of 
many existing methods are resolved by the current study, which 
can more effectively estimate the SPT-N value of soil than is cur-
rently done. 
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Table 1  Correlations developed between SPT-N value of soil and CPT parameters in the past years 

Author Correlation equations 
Schmertmann (1970) qc/N = 3.5 (R2 = 0.24)   for clean sand   where qc in kg/cm2 
Robertson et al. (1986) (qc/Pa)/N60 = 5 (R2 = 0.38)   for clean sand 

Suzuki et al. (1998) 
(qc/Pa)/N60 = 0.0026FC2 − 0.263FC + 12.34; 0 ≤ N < 10 
(qc/Pa)/N60 = 0.00085FC2 − 0.120FC + 8.733; 10 ≤ N < 30 
(qc/Pa)/N60 = 0.001FC2 − 0.059FC + 5.59; 30 ≤ N, FC ≤ 20 

Akca (2003) 
qc/N60 = 0.47 (R2 = 0.31)   for clean sand 
qc/N60 = 0.55 (R2 = 0.34)   for silty sand 
qc/N60 = 0.32 (R2 = 0.48)   for sandy silt   where qc in MPa (unfiltered data) 

Asci et al. (2014) qc = 7.187 exp (−0.4827 N60) + 1.938 exp (0.00989 N60) (R2 = 0.8005)   for sandy silts
Shahien and Albatal (2014) (qc/Pa)/N60 = 17.13 × (D50)0.26/[(N60)0.49 × (FC)0.27] (R2 = 0.52)   for silty sands 

Jarushi et al. (2015) 
qc= 0.291N + 2.430 (R2 = 0.60)   for fine sand (SP) 
qc = 0.121N + 5.086 (R2 = 0.35)   for silty fine sand (SM) 
qc = 0.155N + 7.260 (R2 = 0.11)   for fine sand with silt (SP-SM) 

Lingwanda et al. (2015) (qc + fs) = 0.161 N60 + 7.87 (R2 = 0.604)   filtered data for sandy soil 

Zhao and Cai (2015) 

N = [0.02ρc − 3.48D50 − 0.1αp + 2:53] × qc 
where ρc = 3%, if ρc ≤ 3%; and ρc 15, if ρc ≥ 15%; 

D50 = 0.03, if D50 ≤ 0:03 and D50 = 0.1, if D50 ≥  0.10; 
αp = 0 for silt;  and αp = 1 for silty sand  (R2 = 0.58 to 0.78) 

Dos Santos and Bicalho (2017) qc/N60 = 0.44 (R2 = 0.86)   for Vittoria sand   where qc in MPa 

Khodaparast et al. (2020) 
qc = 0.245N60 + 5.861 (R2 = 0.24)   for clean sand 
qc = −4.609 + 5.823ln (N60) (R2 = 0.36)   for silty sand 
qc = 1.678 + 4.716/(N60) (R2 = 0.67)  for sandy silt

Arifuzzaman and Anisuzzaman (2022) qc = 4N60 ∗ 0.098 (MPa) (R2 = 0.6758) 
fs = 4.66N60 + 70.2 (R2 =0.6408)   for all soils

Khan et al. (2022) qc = 0.52N60 + 9.36 (R2 = 0.45)   for gravelly sand 
fs = 3.13N60 + 116.13 (R2 = 0.35)  for gravelly sand

Hasan (2023) N = 0.877D + 0.706qc + 22.835fs + 0.834 (R2 = 0.6399) 
where D is the depth in m, for all soils

 

2.  METHODOLOGY 

The SPT-N value of soil and its affecting variables are inves-
tigated in this study using five ML algorithms. The hyper-param-
eters of these five algorithms are optimized utilizing the random-
ized search cross-validation (RSCV) algorithm. The five ML al-
gorithms and RSCV are briefly described in this section. 

2.1  Extreme Gradient Boosting (XGB) 

XGB is a standard machine learning technique known for its 
efficiency and efficiency in both regression and classification tasks. 
It uses a more sophisticated version of the gradient boosting archi-
tecture that utilizes an optimized algorithm and various regulari-
zation techniques to improve model accuracy and generalization. 
XGB model works as follows: (a) Gradient Boosting Framework: 
The foundation of XGB is the gradient boosting framework, which 
creates a powerful ensemble model by integrating a number of 
weak predictive models (usually decision trees). The goal of gra-
dient boosting is to continuously train models that minimize the 
errors produced by the past models; (b) Optimization Algorithm: 
XGB employs a highly optimized algorithm to efficiently build the 
ensemble of weak models. The algorithm leverages parallel pro-
cessing and tree pruning techniques to decrease memory utiliza-
tion and gear up the training process; (c) Regularization Tech-
niques: XGB incorporates several regularization procedures to 
avoid overfitting and enhance the quality of generalization. Regu-
larization methods include shrinkage (learning rate), this regulates 
how much each tree contributes to the total forecast, which add 
penalties to the model’s complexity; (d) Tree Construction: XGB 
uses decision trees as base learners. It constructs trees in a greedy 

manner by iteratively splitting the data based on specific criteria, 
such as reducing the loss or maximizing the information gain. The 
tree construction process is guided by optimization objectives and 
constraints to find the best splits and create trees that capture im-
portant patterns in the data; (e) Feature Importance: XGB provides 
a measure of feature importance, which indicates the relative im-
portance of each input feature in the prediction process. Based on 
how often a feature is utilized to divide the data among all the en-
semble trees, feature significance scores are determined; and (f) 
Hyperparameter Tuning: A variety of hyperparameters are availa-
ble in XGB that can be adjusted to enhance the efficiency of the 
model. XGB offers a comprehensive hyperparameters that can be 
tweaked to optimize the model’s performance. Hyperparameters 
govern various aspects of the algorithm, such as the learning rate, 
regularization factors, tree depth, subsampling ratio, etc. 

XGB has gained popularity for its exceptional performance 
in machine learning competitions and real-world applications. It is 
capable of handling large datasets, capturing complex relation-
ships, and providing accurate predictions. However, proper hy-
perparameter tuning and careful validation are important to 
achieve optimal results and prevent overfitting. 

2.2  Multilayer Perceptron (MLP) Artificial Neural Network 

MLP artificial neural networks are a common tool for classi-
fication and regression among other machine learning problems. It 
draws inspiration from the design and operation of the human 
brain. The MLP is made up of numerous layers of neurons, which 
are interconnected nodes. Usually, there are three different types 
of layers: (a) A set of features or attributes may be received by the 
input layer as input data; (b) Layers between the input and output 
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layers are considered hidden layers. Each neuron in a hidden layer 
takes information from the layer below and processes it before 
sending the results to the layer above it. The network can learn 
intricate representations and patterns in the input thanks to the hid-
den layers; and (c) The network’s ultimate output is produced by 
the output layer. The type of task determines how many neurons 
are present in the output layer. For example, in a regression task, 
there is typically a single neuron for predicting a continuous value, 
while in a classification task; there is one neuron per class for pre-
dicting class probabilities. 

The neurons in an MLP are connected by weighted connec-
tions, which determine the strength and importance of the infor-
mation flowing between neurons. Each neuron generates an output 
by applying an activation function to the weighted sum of its in-
puts. In order to reduce the discrepancy between the projected out-
puts and the actual targets, the MLP modifies the weights of the 
connections during training. The weights are iteratively updated 
based on the computed error in order to do this using an optimiza-
tion approach like gradient descent. Finding the ideal collection of 
weights is the goal in order to reduce prediction errors and increase 
the network’s capacity to generalize to new inputs. 

A non-linear function, such as the hyperbolic tangent (tanh) 
function, rectified linear unit (ReLU) function, sigmoid function, 
may be employed as the activation function in an MLP. The net-
work can learn intricate connections between the inputs and out-
puts thanks to non-linear activation functions. MLPs are known 
for their ability to approximate complex functions and learn non-
linear forms in the data. However, they can be susceptible to over-
fitting if not suitably regularized or if the network architecture is 
not appropriately designed. MLPs have become popular in various 
domains due to their flexibility, scalability, and effectiveness in 
handling complex datasets. They have been effectively used in a 
variety of machine learning applications, including time series 
analysis, natural language processing, image identification, and 
many more. 

2.3  Random Forest (RF) 

An ensemble learning technique called RF combines the pre-
dictions of multiple decision trees to get predictions that are more 
accurate. Both classification and regression tasks can be accom-
plished with this flexible and effective technique. RF method 
works as follows: (a) Ensemble Learning: Random Forest belongs 
to the family of ensemble learning methods, which combine mul-
tiple individual models to make collective predictions. In the case 
of Random Forest, the individual models are decision trees; (b) 
Decision Trees: Decision trees are predictive models that learn a 
series of hierarchical if-else rules based on the features of the data. 
Each decision tree makes predictions by following a track from the 
root node to a leaf node, where the final prediction is made; (c) 
Randomness and Diversity: Random Forest introduces random-
ness and diversity into the modeling process. Randomness is in-
troduced by randomly selecting subsets of the original data for 
training each decision tree (bootstrap aggregating or bagging). Di-
versity is achieved by arbitrarily picking a subset of features for 
each split in the decision tree; (d) Voting and Aggregation: When 
making predictions, every decision tree in the Random Forest in-
dependently forecasts the target variable. For classification tasks, 
the class with the majority of votes among the trees is selected as 
the final prediction. For regression tasks, the average or median of 
the predicted values from all the trees is taken as the final 

prediction; (e) Feature Importance: Random Forest provides a 
measure of feature importance, indicating the comparative signif-
icance of each input feature in making predictions. The importance 
is calculated based on how much each feature contributes to the 
reduction of impurity or variance across all the decision trees; and 
(f) Hyper-parameter Tuning: There are several hyper-parameters 
in Random Forest that can be tweaked to enhance efficiency. The 
maximum depth of each tree, the quantity of trees in the forest, the 
amount of features taken into account for each split, etc. are some 
significant hyper-parameters. 

Random Forest is known for its robustness, scalability, and 
capacity for handling high-dimensional data. It is less prone to 
over-fitting compared to individual decision trees and often yields 
better performance in terms of accuracy. However, like any algo-
rithm, proper hyper-parameter tuning and careful validation are 
crucial to achieve optimal results. 

2.4  Ridge Regression (RIDGE) 

The Ridge method, also known as Ridge regression or 
Tikhonov regularization, is a regularization technique used in lin-
ear regression models. It helps to address the issue of multi-collin-
earity (high correlation between features) and reduce the impact of 
less important features on the model. Ridge method works as fol-
lows: (a) Objective function: The objective function for linear re-
gression includes a penalty term thanks to the Ridge technique. 
The objective function attempts to reduce the quantity of squared 
residuals, which gauges the difference between expected and ob-
served values. The penalty term is the L2 norm (squared values) 
of the coefficients multiplied by a regularization parameter 
(lambda or alpha); (b) L2 regularization: The L2 norm penalty in 
the Ridge method is the sum of the squared values of the coeffi-
cients. This penalty term discourages extreme values of the coef-
ficients and encourages smaller, more spread-out values. It aids in 
managing the model’s complexity and lessens the effects of multi-
collinearity; (c) Shrinkage of coefficients: The Ridge method 
shrinks the coefficients towards zero, reducing their magnitudes. 
The amount of shrinkage is controlled by the regularization pa-
rameter. A larger regularization parameter results in more aggres-
sive shrinkage and smaller coefficients; (d) Multi-collinearity han-
dling: Ridge regression is particularly useful when dealing with 
datasets that have multi-collinearity, where features are highly cor-
related. By shrinking the coefficients, Ridge regression reduces the 
impact of highly correlated features and prevents them from dom-
inating the model; (e) Bias-variance tradeoff: The Ridge method 
helps in striking a balance between bias and variance in the model. 
Increasing the regularization parameter increases the bias of the 
model but reduces its variance, while decreasing the regularization 
parameter has the opposite effect. Proper tuning of the regulariza-
tion parameter is important to find the right balance for the given 
dataset; and (f) Hyper-parameter tuning: Ridge regression in-
volves tuning the regularization parameter (lambda or alpha) to 
optimize the model’s efficiency. Cross-validation techniques can 
be utilized to evaluate different values of the regularization param-
eter and select the optimal one. 

The Ridge method is widely used in various domains to han-
dle multi-collinearity and improve the stability and generalization 
of linear regression models. By shrinking the coefficients, in the 
presence of strongly linked predictors, it aids in determining and 
ranking the most important features. 
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2.5  Support Vector Regression (SVM) 

Notable supervised machine learning methods for classifica-
tion and regression include Support Vector Machine (SVM). It is 
particularly effective in handling complex datasets with clear mar-
gin or separation between different classes. A SVM model works 
as follows: (a) Basic concept: In a high-dimensional feature space, 
SVM seeks to identify the best hyperplane for classifying the data 
points. In binary classification, SVM seeks to find a hyperplane 
that maximizes the margin between each class’s nearest data 
points. Support vectors are utilized to express these nearby data 
points; (b) Feature space and hyperplane: The feature space refers 
to the transformed space where the input data points are mapped 
using a kernel function. A hyperplane which most effectively di-
vides the data points has been identified by SVM. In two dimen-
sions, the hyperplane is a line, while in higher dimensions, it be-
comes a hyperplane; (c) Margin and support vectors: The margin 
is the gap between the nearest data points for each class and the 
hyperplane. SVM seeks to increase this margin, as a larger margin 
usually implies better generalization and robustness to new data. 
The data points represent the support vectors that lie on the margin 
or are misclassified. These points influence the position and orien-
tation of the hyperplane; (d) Linear and non-linear separation: 
SVM can handle both linearly separable and non-linearly separa-
ble data. For linear separation, a linear kernel (e.g., the linear func-
tion) is used to create a linear decision boundary. For non-linear 
separation, SVM utilizes kernel functions (for instance, a polyno-
mial or a radial basis function) to translate the data into a space 
with more dimensions, where a linear separation is possible; (e) 
Training process: Given a labeled training dataset, SVM deter-
mines the optimal hyperplane by solving an optimization problem. 
The optimization problem involves identifying the hyperplane that 
increases the margin while minimizing the classification errors. 
The solution is obtained by solving a quadratic programming prob-
lem or through convex optimization techniques; and (f) Prediction: 
Once the optimal hyperplane is determined, SVM can predict the 
class label of new, unseen data points by evaluating which side of 
the hyperplane they fall on. 

Key characteristics and considerations of the SVM models 
are: (a) Versatility: SVM can handle both linear and non-linear 
classification tasks; (b) Robustness: SVM is less prone to overfit-
ting due to the margin maximization objective; (c) Kernel func-
tions: The choice of kernel function can significantly impact 
SVM’s performance and ability to handle complex datasets; and 
(d) Model complexity: The complexity of the SVM model depends 
on the number of support vectors, which affects training and pre-
diction time. 

SVM is frequently utilized in many fields, including image 
classification, text classification, and bioinformatics. Effectively 
separate classes and handling of high-dimensional data makes it a 
valuable tool in machine learning. 

2.6  Randomized Search Cross-Validation (RSCV) 

The term “Randomized Search CV” refers to cross-validation. 
It is a method for selecting models and tweaking hyperparameters 
in machine learning. Hyperparameters are settings made by the 
user prior to training a machine learning model rather than ones 
that are learned from the data. The rate of learning, the quantity of 
hidden layers in a neural network, or the regularization strength is 
a few examples of hyperparameters. 

To determine the ideal set of hyperparameters for a particular 
model, Randomized Search CV combines cross-validation and 
random sampling of hyperparameters. It operates by selecting a 
subset of hyperparameter combinations at random from a prede-
termined search space and assessing their effectiveness using 
cross-validation. Here is a detailed explanation of how Random-
ized Search CV operates: (a) Establish a search area: Indicate the 
range of values or distributions from which to sample the hyperpa-
rameters; (b) Randomly sample hyperparameter combinations: 
Pick a selection of hyperparameter combinations at random from 
the search space; (c) Evaluate each combination: Utilizing each 
combination of hyperparameters, develop and test the model. Typ-
ically, k-fold cross-validation is used for this, where the data is 
divided into k subsets (folds), the model is trained and assessed k 
times, and each time, a different fold is used as the validation set; 
(d) Choose the optimal combination: The performance metric 
(such as accuracy, precision, or recall) achieved during the cross-
validation procedure should be used to determine the optimum hy-
perparameter combination; and (e) Train the model again: On the 
complete training dataset, train the model using the optimal com-
bination of hyperparameters. 

Randomized Search CV rapidly explores a wide variety of 
hyperparameter combinations without analyzing all potential pos-
sibilities by using random sampling as opposed to an exhaustive 
grid search. This makes it appropriate in situations where the hy-
perparameter search space is huge or when there are not enough 
processing resources. In general, Randomized Search CV aids in 
automating the hyperparameter tuning process, enabling the 
choice of ideal hyperparameters for a machine learning model. 

3.  PREPARATIONS OF DATA AND  
INTERPRETATION 

In order to evaluate SPT-N value of soil through a comparison 
analysis, five ML procedures are utilized to the dataset of 1113 
instances of Cone Penetration Testing (CPT) data. These are col-
lected from 54 collocated CPT and SPT within the DMDP area of 
Bangladesh as shown in Fig. 1. It should be noted that the dataset 
is fairly thorough and contains a wide range of metrics that are 
important for figuring out the SPT-N values. For determining SPT-
N values, it is critical to choose the factors that will have the big-
gest impact. As input characteristics, five variables are chosen, in-
cluding depth (D), moisture content (MC), fine content (FC), CPT 
tip resistance (qc) and CPT local friction (fs) are nominated as an 
input parameters (see Table 2). 

Figure 2 shows the correlation matrix for the affecting varia-
bles as a heat map and Fig. 3 shows the affecting variables as a pair 
panel. The correlation matrix displays the correlation coefficient 
between the variables, while the pair panel displays the histogram 
of individual variable and scatter plots between two variables. 

3.1  Data Splitting and Cross-Validation 

To preserve the model’s capacity to simplify while addressing 
the overfitting issue, in this work, around 80% of the instances are 
considered in the training set and 20% of specimens are allotted to 
the testing set utilizing arbitrary selection. It should be mentioned 
that before performing any modeling, we have normalized the da-
taset. The objective of normalization is to convert the dataset’s val-
ues to a mutual scale without affecting variations in the value ranges. 
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Fig. 1  Locations of CPT/SPT tests performed in the DMDP area 

along with the geology 

Table 2  Summary of the dataset 
 D (m) MC (%) FC (%) qc (MPa) fs (MPa) SPT-N

Mean 17.0 24.9 58.9 7.12 0.1285 22.6 
STD 10.1 8.9 31.8 5.70 0.1068 14.8 
Min 1.5 1.4 5.0 0.01 0.0010 1 
Max 49.5 89.1 100.0 34.49 0.7140 50 

Dataset: 1113 

 

Fig. 2  Correlation matrix of one output variable and five input 
variables 

The predictive power of five OML algorithms is assessed in 
this study using K-fold cross-validation on the same data. The 
data can be subjected to cross-validation techniques to reduce the 
likelihood of overfitting and bias during selection in the ML ap-
proaches. The data is split into K equal-sized subsets for the K-
fold CV. The single surviving subset of the K subsets is em-
ployed as the testing data, while the K-1 subsets are utilized as 
training data. Then, this procedure is carried out K times using 
various subsets as the testing subset. In order to evaluate OML 
algorithms on a small sample of data, CV is a resampling ap-
proach. The 5-fold CV is the most popular CV, which has been 
utilized in this study. 

 

 
Fig. 3  Pair panel of input variables



88  rnal of GeoEngineering, Vol. 19, No. 2, June 2024 

3.2  Measures of Performance 

The SPT-N value (N) is investigated between actual and esti-
mated values using mean absolute error (MAE), root mean square 
error (RMSE), variance accounted for (VAF) and R-squared value 
(R2) to show the accuracy of five OML algorithms’ estimation. 
The mean absolute error is the mean absolute error between actual 
and predicted values. The most often used metric for assessing 
models is the mean squared error. Here, the difference between 
actual values and anticipated values is squared, and the average of 
those values is computed for each data point. The MSE can be a 
helpful statistic to employ when the dataset contains unforeseen 
values, either very high or low values. However, the MSE can ei-
ther overstate or underestimate how awful the prediction is when 
dealing with noisy data, i.e., when the data are not completely de-
pendable. The RMSE is described as a root of MSE. Another sta-
tistic for regression issues that calculates the variance between the 
actual values and anticipated values is variance accounted for. A 
statistical parameter R-squared may be used to assess the accuracy 
of the fit which represents how narrowly an algorithm resembles 
the real data points. 

4.  ANALYSIS FINDINGS 

This section discusses hyper-parameter tuning, a comparison 
of five ML methods for estimating the SPT-N value of soil, and 
the significance of influencing variables. Figure 4 depicts the 

process for SPT-N value evaluation of soil using OML approaches. 
Training and testing datasets are created from the initial dataset. 
Five cutting-edge ML algorithms are optimized after being trained 
on the training dataset. Then, the OML models are utilized to the 
test dataset in order to compare their results. 

4.1  Hyper-Parameter Tuning Results 

The hyper-parameters of every ML method which have been 
obtained through the randomized search cross-validation (RSCV) 
algorithm are shown in Table 3, along with their tuned values. Fig-
ure 5 displays the evolution of the root mean squared error value 
over the training dataset’s iterations. Figure 5 shows that hyper-
parameter adjustment, especially for MLP, SVR, and XGB, has a 
significant impact on how well ML algorithms perform. 

Table 3  Hyper-parameter tuning 

ML algorithms Optimum value 

XGB 
'subsample': 1.0, 'reg_lambda': 0.5, 'reg_alpha': 0, 'n_esti-
mators': 300, 'max_depth': 3, 'learning_rate': 0.01, 'colsam-
ple_bytree': 0.8

MLP 
'activation': 'tanh', 'alpha': 0.0024062425041415756, 'hid-
den_layer_sizes': 91, 'learning_rate': 'adaptive', 'max_iter': 
610, 'solver': 'adam' 

RF max_depth = 9, max_features = 'sqrt', max_leaf_nodes =
9, n_estimators = 150 

RIDGE 'solver': 'saga', 'alpha': 0.24770763559917114
SVR 'kernel': 'rbf', 'gamma': 0.0001, 'C': 1000

 

 
Fig. 4  Methodological flowchart of this study
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Iterations     

 HT: Hyper-parameter tuning
 

Fig. 5  RMSE values along with iterations on the training dataset 

4.2  Review and Comparison of Five Machine Learning 
Models 

4.2.1  Training Dataset Results 

On the training data of 890 SPT-N value and corresponding 
CPT and other soil parameters, five OML algorithms are used. The 
regression graphs for each of these techniques are displayed in Fig. 
6. Among the five OMLs, RF and SVR exhibit the best perfor-
mances (R2 = 0.9205 and 0.8956, respectively), which is excep-
tional performance. XGB, which has an R-squared value of 0.8934, 
comes next. The performances of MLP (R2 = 0.8607) and RIDGE 
(R2 = 0.8252) are adequate.  

4.2.2  Testing Dataset Results 

The SPT-N values of the soils in the testing dataset are now 
estimated using five OML models that were trained in the former 
section. Five OML approaches’ performance on 223 samples from 
the testing data—where no training procedure was applied—is as-
sessed. Figure 7 shows the regression graphs for the test set of five 
OML models. The ranking of OML technique performance for the 
testing dataset is different from that for the training dataset, as 
shown by a comparison of Figs. 6 and 7, and R-squared values also 
vary between the training and testing datasets. On the testing da-
taset, SVR and MLP display excellent performances (R2 = 0.87677 
and 0.8681, respectively). Both XGB (R2 = 0.8647) and RF (R2 = 
0.8579) exhibit good performances. This is followed by RIDGE 
(R2 = 0.8110), which shows acceptable performance. 

4.2.3  Results Comparison 

Each OML algorithm’s mean absolute error, root mean 
squared error, variance accounted for, and R-squared values for 
training and testing datasets are presented in Table 4. Each tech-
nique’s performance ranking is also displayed. According to Table 
4, RF and RIDGE, which are ranked first and last among OML 
models for training data, respectively obtain the uppermost and 
lowermost R-squared values. Similarly for the testing datasets, 
SVR and RIDGE are categorized first and last among OML algo-
rithms for testing datasets, respectively. For testing datasets, MLP 
is ranked 2nd and XGB is ranked 3rd. The efficiency of OML pro-
cedures on the testing data is more significant to be taken into ac-
count as a utilization of each OML algorithm meanwhile the test-
ing data may be seen as an illustration of an actual situation. 

 
(a) XGB (R2 = 0.8934)                          (b) MLP (R2 = 0.8607)                          (c) RF (R2 = 0.9205) 

   
(d) RIDGE (R2 = 0.8252)                          (e) SVR (R2 = 0.8956) 

Fig. 6  Regression plots for the training set of five OML algorithms 
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(a) XGB (R2 = 0.8647)                         (b) MLP (R2 = 0.8681)                          (c) RF (R2 = 0.8579) 

   
(d) RIDGE (R2 = 0.8110)                          (e) SVR (R2 = 0.8767) 

Fig. 7  Regression plots for the testing set of five OML algorithms 

Table 4  Statistical analyses of five ML algorithms 

ML algorithms MAE RMSE VAF R2 Ranking

XGB 
Training 5.1915 6.8599 0.7825 0.8934 3 
Testing 5.6720 7.8080 0.7920 0.8647 3 

MLP 
Training 5.5984 7.4895 0.7407 0.8607 4 
Testing 5.4257 7.5100 0.7521 0.8681 2 

RF 
Training 4.3984 5.8213 0.8433 0.9205 1 
Testing 5.5750 7.7442 0.8502 0.8579 4 

RIDGE 
Training 6.2990 8.3070 0.6810 0.8252 5 
Testing 6.6240 8.9220 0.6950 0.8110 5 

SVR 
Training 4.2836 6.5594 0.8011 0.8956 2 
Testing 4.9374 7.2897 0.8098 0.8767 1 

Considering depth, cone tip resistance and side friction as in-
dependent variables and SPT-N value as the dependent variable, a 
multiple linear regression equation has been developed by Hasan 
(2023), where obtained R2 is only 0.6399. In this study, using SVR 
and MLP ML algorithms for testing dataset, this R2 value has been 
increased to 0.8767 and 0.8681, respectively. 

4.3  Results of Variable Importance 

The RF and SVR exhibit the top relative efficiency in the 
training and the testing data respectively, according to the compar-
ison. In order to evaluate the significance of influencing parame-
ters for the SPT-N value estimation of soils, RF is used. The nor-
malized values for variable importance are displayed in Fig. 8. In 
this analysis, it has been assumed that there exists a trained model 
(in this case RF). For RF model, feature importance represent a 
score that measures how useful each feature is in the construction 
of the RF within the ensemble. These importance are typically 
computed based on how much each feature decreases impurity 

 
Fig. 8  Relative variable importance for SPT-N value (for the 

case RF)  

across all the RF in the ensemble. These importance are computed 
during the training of the model and reflect how much each feature 
contributes to the model’s predictive performance. Overall, feature 
importance provide valuable insights into which features are most 
relevant to the model’s predictions, helping users understand the 
model’s behavior and potentially identify important features in the 
dataset. 

According to Fig. 8, depth (D) is the factor that has the biggest 
impact on estimating the SPT-N value of soils (score = 0.2406). 
The remaining factors’ importance values for estimating the SPT-
N value of soils fall in the following order: cone tip resistance 
(score = 0.2361) > moisture content (score = 0.1898) > cone shaft 
friction (score = 0.1788) > fine content (score = 0.1547). It is cru-
cial to keep in mind that when alternative datasets and models are 
used, scores may vary. Additionally, it is essential to mark that 
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these five input features are of non-ignorable relevance because 
they are used as the fundamental input parameters in the majority 
of engineering projects. 

4.4  Comparison with Existing Models, RF and XGB 

In this section, previously established SPT-N value versus 
CPT correlations developed by Arifuzzaman and Anisuzzaman 
(2022) and Hasan (2023) for all soil types have been used to esti-
mate SPT-N value of soils and the results are then compared to the 
RF and SVR algorithms results. Figure 9(a) exhibits that the RF 
and SVR approach outperformed Arifuzzaman and Anisuzzaman 
(2022) model in terms of performance. On the other hand, Hasan 
(2023) model performs relatively better in estimating SPT-N value 
of soils. The positive and negative residuals (difference between 
predicted and measured SPT-N values) of Fig. 9(b) show that Ari-
fuzzaman and Anisuzzaman (2022) model under-predicts and Ha-
san (2023) model slightly over-predicts the majority of the dataset. 

4.5  Discussion 

This study’s main advantage is its comparison and proposal 
of five improved machine learning (ML) techniques for estimating 
the SPT-N value of soils. The following components of this study 
add to our understanding of the estimation of SPT-N value of soils 
and other geotechnical engineering fields: For regression problems 
in geotechnical engineering: (a) the optimized ML approaches are 
extremely promising; (b) the stability and resilience of regression 
procedures may be effectively explored using MAE, RMSE, VAF, 

and R-squared values; (c) the approach presented in this study has 
significant promise for a wider use in other geotechnical engineer-
ing areas where regression complications are frequently faced; and 
(d) a few guidelines have been given for forecasting the SPT-N 
value of soils by applying ML algorithms. If more data can be col-
lected, the efficiency of the suggested optimized ML models can 
be enhanced. 

5.  CONCLUSIONS AND RECOMMENDA-
TIONS 
When laboratory testing cannot be done, empirical equa-

tions are employed to determine the engineering properties of 
soil. In-situ test findings and soil index features are frequently 
combined to create empirical relationships that offer cost-effec-
tive and non-destructive alternatives. The training dataset that is 
utilized to construct the algorithm affects how effective it is. In 
this study, the optimum model for estimating the SPT-N value of 
soils has been identified by a thorough evaluation of five OML 
models, comprising MLP, RF, RIDGE, SVR, and XGB. 1113 
pieces of data make up the dataset used by the OML algorithms. 
As performance measure, fivefold cross-validation is employed, 
along with mean average error, root mean square error, R-
squared, and variance accounted for values. Following are some 
significant deductions: 

Randomized search cross-validation (RSCV) algorithm is a 
useful procedure for tweaking the hyper-parameters of ML models, 
in line with the optimal scores attained by ML algorithms across 
iterations.  

 
(a) 

 
(b) 

Fig. 9  SPT-N values at testing stages: (a) predicted; (b) residual
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On the training dataset of 890 SPT-N value and correspond-
ing CPT and other soil parameters, five OML algorithms are used. 
Among the five OMLs, RF and SVR exhibit the best performances 
(R2 = 0.9205 and 0.8956, respectively), which is exceptional per-
formance. XGB, which has an R-squared value of 0.8934, comes 
next. The performances of MLP (R2 = 0.8607) and RIDGE (R2 = 
0.8252) are adequate. The SPT-N values of the soils in the testing 
dataset are also estimated using five OML algorithms that were 
trained. Five OML approaches’ performance on 223 samples from 
the testing data—where no training procedure was applied—is as-
sessed. The ranking of OML technique performance for the testing 
dataset is different from that for the training dataset, and that R-
squared values also differ between the training and testing data. 
On the testing dataset, SVR and MLP display excellent perfor-
mances (R2 = 0.8767 and 0.8681, respectively). Both XGB (R2 = 
0.8647) and RF (R2 = 0.8579) exhibit good performances. This is 
followed by RIDGE (R2 = 0.8110), which shows acceptable per-
formance. 

The CPT cone resistance is the variable that has the second 
greatest influence on determining the SPT-N value of soil, accord-
ing to the results of a variable importance study (score = 0.2361). 

The performance of RF and SVR is compared with the mod-
els of Arifuzzaman and Anisuzzaman (2022) and Hasan (2023) on 
the testing dataset of the present study. The OML models such as 
RF and SVR presented in this paper outperform Arifuzzaman and 
Anisuzzaman (2022) model in terms of fit to the testing dataset. 
On the other hand, Hasan (2023) model performs relatively better 
in estimating SPT-N value of soils. 

Future research may incorporate additional soil factors that 
may be important in determining in addition to CPT cone re-
sistance and side friction, depth, and grain size analysis parameters 
etc. For more accuracy, the authors advise using hybrid machine 
learning models. 
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